272 research outputs found

    Optimal experimental designs for the exploration of reaction kinetic phase diagrams

    Get PDF

    Neural substrates of sensory-guided locomotor decisions in the rat superior colliculus

    Get PDF
    Deciding in which direction to move is a ubiquitous feature of animal behavior, but the neural substrates of locomotor choices are not well understood. The superior colliculus (SC) is a midbrain structure known to be important for controlling the direction of gaze, particularly when guided by visual or auditory cues, but which may play a more general role in behavior involving spatial orienting. To test this idea, we recorded and manipulated activity in the SC of freely moving rats performing an odor-guided spatial choice task. In this context, not only did a substantial majority of SC neurons encode choice direction during goal-directed locomotion, but many also predicted the upcoming choice and maintained selectivity for it after movement completion. Unilateral inactivation of SC activity profoundly altered spatial choices. These results indicate that the SC processes information necessary for spatial locomotion, suggesting a broad role for this structure in sensory-guided orienting and navigation

    A model-free sparse approximation approach to robust formal reaction kinetics

    Get PDF
    Accurate and transferable models of reaction kinetics are of key importance for chemical reactors on both laboratory and industrial scale. Usually, setting up such models requires a detailed mechanistic understanding of the reaction process and its interplay with the reactor setup. We present a data driven approach which analyzes the influence of process parameters on the reaction rate to identify locally approximated effective rate laws without prior knowledge and assumptions. The algorithm we propose determines relevant model terms from a polynomial ansatz employing well established statistical methods. For the optimization of the model parameters special emphasize is put on the robustness of the results by taking not only the quality of the fit but also the distribution of errors into account in a multi-objective optimization. We demonstrate the flexibility of this approach based on artificial kinetic data sets from microkinetic models. This way, we show that the kinetics of both the classical HBr reaction and a prototypical catalytic cycle are automatically reproduced. Further, combining our approach with experimental screening designs we illustrate how to efficiently explore kinetic regimes by using the example of the catalytic oxidation of CO

    Second-order calculation of the local density of states above a nanostructured surface

    Full text link
    We have numerically implemented a perturbation series for the scattered electromagnetic fields above rough surfaces, due to Greffet, allowing us to evaluate the local density of states to second order in the surface profile function. We present typical results for thermal near fields of surfaces with regular nanostructures, investigating the relative magnitude of the contributions appearing in successive orders. The method is then employed for estimating the resolution limit of an idealized Near-Field Scanning Thermal Microscope (NSThM).Comment: 10 pages, 7 figure

    At Wisdom’s Table: How Narrative Shapes the Biblical Food Laws and Their Social Function

    Get PDF
    This second part of a two-paper sequence deals with the physical interpretation of the rigorously derived high-frequency asymptotic wave-field solution in Part I, pertaining to a semi-infinite phased array of parallel dipole radiators. The asymptotic solution contains two parts that represent contributions due to truncated Floquet waves (FW's) and to the corresponding edge diffractions, respectively. The phenomenology of the FW-excited diffracted fields is discussed in detail. All possible combinations of propagating (radiating) and evanescent (nonradiating) FW and diffracted contributions are considered. The format is a generalization of the conventional geometrical theory of diffraction (GTD) for smooth truncated aperture distributions to the truncated periodicity-induced FW distributions with their corresponding FW-modulated edge diffractions. Ray paths for propagating diffracted waves are defined according to a generalized Fermât principle, which is also valid by analytic continuation for evanescent diffracted ray fields. The mechanism of uniform compensation for the FW-field discontinuities (across their truncation shadow boundaries) by the diffracted waves is explored for propagating and evanescent FW's, including the cutoff transition from the propagating to the evanescent regime for both the FW and diffracted constituents. Illustrative examples demonstrate: 1) the accuracy and efficiency of the high-frequency algorithm under conditions that involve the various wave processes outlined above and 2) the cogent interpretation of the results in terms of the uniform FW-modulated GTD. ©2000 IEEE

    Oblique launching of optical surface waves by a subwavelength slit

    Get PDF
    The electromagnetic field on the metal surface launched by a subwavelength slit is analytically studied, for the case when the fundamental mode inside the slit has a wavevector component along the slit axis (conical mount). Both near-field and far-field regions are discussed, and the role of surface plasmon-polaritons and Norton waves is revealed. It is shown that the distance from the slit at which NW are more intense than surface plasmons decrease with parallel wavevector, which could help experimental studies on Norton waves. Additionally, it is found that the s-polarization component, while present for any non-zero parallel wavevector, only weakly contributes to the NWs.Comment: 8 pages, 5 figure

    Dynamics of light propagation in spatiotemporal dielectric structures

    Full text link
    Propagation, transmission and reflection properties of linearly polarized plane waves and arbitrarily short electromagnetic pulses in one-dimensional dispersionless dielectric media possessing an arbitrary space-time dependence of the refractive index are studied by using a two-component, highly symmetric version of Maxwell's equations. The use of any slow varying amplitude approximation is avoided. Transfer matrices of sharp nonstationary interfaces are calculated explicitly, together with the amplitudes of all secondary waves produced in the scattering. Time-varying multilayer structures and spatiotemporal lenses in various configurations are investigated analytically and numerically in a unified approach. Several new effects are reported, such as pulse compression, broadening and spectral manipulation of pulses by a spatiotemporal lens, and the closure of the forbidden frequency gaps with the subsequent opening of wavenumber bandgaps in a generalized Bragg reflector

    In the diffraction shadow: Norton waves versus surface plasmon-polaritons in the optical region

    Get PDF
    Surface electromagnetic modes supported by metal surfaces have a great potential for uses in miniaturised detectors and optical circuits. For many applications these modes are excited locally. In the optical regime, Surface Plasmon Polaritons (SPPs) have been thought to dominate the fields at the surface, beyond a transition region comprising 3-4 wavelengths from the source. In this work we demonstrate that at sufficiently long distances SPPs are not the main contribution to the field. Instead, for all metals, a different type of wave prevails, which we term Norton waves for their reminiscence to those found in the radio-wave regime at the surface of the Earth. Our results show that Norton Waves are stronger at the surface than SPPs at distances larger than 6-9 SPP's absorption lengths, the precise value depending on wavelength and metal. Moreover, Norton waves decay more slowly than SPPs in the direction normal to the surface.Comment: 8 pages, 8 figure
    corecore